Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 1048776, 2022.
Article in English | MEDLINE | ID: covidwho-2231971

ABSTRACT

Background: Understanding the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination will enable accurate counseling and inform evolving vaccination strategies. Little is known about antibody response following booster vaccination in people living with HIV (PLWH). Methods: We enrolled SARS-CoV-2 vaccinated PLWH and controls without HIV in similar proportions based on age and comorbidities. Participants completed surveys on prior SARS-CoV-2 infection, vaccination, and comorbidities, and provided self-collected dried blood spots (DBS). Quantitative anti-spike IgG and surrogate viral neutralization assays targeted wild-type (WT), Delta, and Omicron variants. We also measured quantitative anti-nucleocapsid IgG. The analysis population had received full SARS-CoV-2 vaccination plus one booster dose. Bivariate analyses for continuous outcomes utilized Wilcoxon tests and multivariate analysis used linear models. Results: The analysis population comprised 140 PLWH and 75 controls with median age 58 and 55 years, males 95% and 43%, and DBS collection on 112 and 109 days after the last booster dose, respectively. Median CD4 count among PLWH was 760 cells/mm3 and 91% had an undetectable HIV-1 viral load. Considering WT, Delta, and Omicron variants, there was no significant difference in mean quantitative anti-spike IgG between PLWH (3.3, 2.9, 1.8) and controls (3.3, 2.9, 1.8), respectively (p-values=0. 771, 0.920, 0.708). Surrogate viral neutralization responses were similar in PLWH (1.0, 0.9, and 0.4) and controls (1.0, 0.9, 0.5), respectively (p-values=0.594, 0.436, 0.706). Conclusions: PLWH whose CD4 counts are well preserved and persons without HIV have similar anti-spike IgG antibody levels and viral neutralization responses after a single SARS-CoV-2 booster vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , HIV Infections , Humans , Male , COVID-19/prevention & control , Immunoglobulin G , SARS-CoV-2 , Vaccination , Female , Middle Aged
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2207733

ABSTRACT

Background Understanding the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination will enable accurate counseling and inform evolving vaccination strategies. Little is known about antibody response following booster vaccination in people living with HIV (PLWH). Methods We enrolled SARS-CoV-2 vaccinated PLWH and controls without HIV in similar proportions based on age and comorbidities. Participants completed surveys on prior SARS-CoV-2 infection, vaccination, and comorbidities, and provided self-collected dried blood spots (DBS). Quantitative anti-spike IgG and surrogate viral neutralization assays targeted wild-type (WT), Delta, and Omicron variants. We also measured quantitative anti-nucleocapsid IgG. The analysis population had received full SARS-CoV-2 vaccination plus one booster dose. Bivariate analyses for continuous outcomes utilized Wilcoxon tests and multivariate analysis used linear models. Results The analysis population comprised 140 PLWH and 75 controls with median age 58 and 55 years, males 95% and 43%, and DBS collection on 112 and 109 days after the last booster dose, respectively. Median CD4 count among PLWH was 760 cells/mm3 and 91% had an undetectable HIV-1 viral load. Considering WT, Delta, and Omicron variants, there was no significant difference in mean quantitative anti-spike IgG between PLWH (3.3, 2.9, 1.8) and controls (3.3, 2.9, 1.8), respectively (p-values=0. 771, 0.920, 0.708). Surrogate viral neutralization responses were similar in PLWH (1.0, 0.9, and 0.4) and controls (1.0, 0.9, 0.5), respectively (p-values=0.594, 0.436, 0.706). Conclusions PLWH whose CD4 counts are well preserved and persons without HIV have similar anti-spike IgG antibody levels and viral neutralization responses after a single SARS-CoV-2 booster vaccination.

3.
PLoS One ; 17(6): e0270060, 2022.
Article in English | MEDLINE | ID: covidwho-2021817

ABSTRACT

BACKGROUND: An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC rapid PCR test. METHODS: We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites where we collected two bilateral anterior nasal swabs and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard". RESULTS: We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R = 0.89 [95% CI 0.81, 0.94]). CONCLUSIONS: DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results (approximately 15 minutes) in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Cross-Sectional Studies , Female , Humans , Male , Point-of-Care Systems , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL